

P.O. Box 2646 • Corvallis, Oregon 97339 • p: 541.223.5360 • f: 541.223.5278

July 10, 2023

Project Name: Wilco Project Address: W 11th & Willow Creek Permit Number: 23-01679-01

RE: Structural Response to Plan Review for Wilco in Eugene, OR

We have reviewed the structural comments provided and have found the following:

STRUCTURAL

S5 - 06_S2.0 ROOF FRAMING PLAN.pdf, page 1

Please clarify the wall anchorage and sub-diaphragm design for the east and west walls. It does not appear that the joist girders are anchored to the walls or have been detailed to form continuous ties. Ledger anchorage (det. A/S4.2) is adequate, but there does not appear to be a load path to transfer out-of-plane wall forces into the diaphragm or distribute them to the perpendicular walls. (OSSC 1604.4; ASCE 7 12.11.2)

 The metal deck is designed for direct transfer of lateral and out of plane forces to and from the steel angle ledger. See page 19 of the calculations for attachment and deflection checks.

FOLLOW UP COMMENT: The comment has been partially resolved. The steel deck diaphragm is adequate to anchor the walls and develop forces into the roof for the length of the diaphragm elements (i.e., three spans or ~16-ft). However, the diaphragm does not appear to be adequate to distribute the wall anchorage forces to the front and back walls within this depth. Please provide continuous ties to distribute the anchorage forces. See ASCE 7 12.11.2.2.

• The diaphragm runs the entire length of the building. Each panel of metal decking is lapped to create a continuous tie. The lap attachment is equivalent to the attachment at the steel ledger. Additional rigidity will occur at the girders that run the full length of the building and are spaced at roughly 31' on center. See the detail B-S2.0 for end lap attachment requirements.

S6 - 06_S2.1 ENLARGED ROOF FRAMING PLAN.pdf, page 1

Please clarify the lateral force resisting systems for the structures shown on this sheet. Wind loads applied to portions of the entry-facade and tower-facade projecting above the main building roof should be designed as rooftop structures and subject to the wind load factors of ASCE 7 29.4.1. (OSSC 1609.1, 1613.1)

- Facade/Entry: The wood framed roof diaphragm is laterally tied to the main building cmu wall and the entry cmu wall. Where the wood framed diaphragm isn't directly attached to the cmu, there are wood framed shear walls transferring loads from the diaphragm down to the cmu walls. Every other truss is attached to the main building cmu wall with tension ties to resist all pullout forces. See sheet S3.1 for details and page 52 of the revised calculations.
- Loading Cover: The wood framed roof diaphragm is laterally tied to the main building cmu wall and the CFS shear wall at the opposing end. The glulam beams running

perpendicular to the main cmu wall are attached with large steel buckets (See C-S3.2) that resist gravity loads as well as pullout forces. See sheet S3.2 for details and page 58 of the revised calculations.

 Back Corner Facade: The CFS framed roof diaphragm is laterally tied to the CFS framed shear walls. The CFS framed shear walls are framed down to the main building cmu walls and steel reinforcement in the main roof system. The shear walls have holdowns spaced at 4'-0" o.c. to resist all uplift forces. See sheet S3.3 for details and pages 64 & 68 of the revised calculations.

FOLLOW UP COMMENT: The response references revised calculations. It does not appear that revised calculations were submitted with the plan check response. Please submit calculations showing the derivation of lateral forces acting upon these roof structures and the complete load path for resolution of lateral forces through the building frame. It appears that the facade and loading cover both transfer lateral forces to the CMU walls at mid-height. Please show how these forces are resolved through out-of-plane bending of the walls.

- A calculation has been added to model the concentrated wind load that the main facade would apply to the CMU wall. Seismic loads from the fully grouted CMU wall control the design at this condition. See pages 25-27 of the revised Calculations.
- The loading dock cover has been revised to resist all out of plane loads at the (2) 4'-0" long side walls. New sheathing, top plate nailing, and anchor bolts have been specified. This relieves all tension loads at the glulam beam bracket. See page 58 of the revised calculations and details A and B on S3.2 of the revised plans.

S8 - 06_S3.2 SECTIONS.pdf, page 1

Provide positive attachment between the facade roof structure and the CMU wall to resist the nominal lateral forces of ASCE 7 12.1.3.

• The roof diaphragm nails directly to a ledger that is attached to the main cmu wall. The ledger was designed to transfer the lateral forces to the cmu wall. Pullout forces are resisted by the glulam beams that the trusses set on.

FOLLOW UP COMMENT: The comment is only intended to address the nominal structural continuity force of ASCE 7 12.1.3 between the roof and the wall, not out-of-plane wall anchorage per ASCE 7 12.11. The roof diaphragm and ledger to wall connection results in cross grain tension in the ledger. It is therefore unable to provide the required continuity.

 The loads that are parallel to the cmu wall are transferred into the ledger and do not create cross grain bending. The loads that are perpendicular to the wall are transferred down to the glulam beams by the roof diaphragm and truss blocking and are resisted by the revised 4'-0" shear walls. Tension ties with blocking have been added to resist any localized out of plane loads at the roof ledger. See details A and B on S3.2 of the revised plans.

S10 - 06_S3.2 SECTIONS.pdf, page 1

Detail C: Please verify that the Titen screw spacing meets the manufacturer specifications and that the connection has adequate tension capacity to resist reactions due to lateral forces on the loading cover structure. (OSSC 1604.2)

 This bracket was based directly off of a bracket from the Simpson catalog. The proposed bracket meets the minimum requirements for Titen HD installation and has enough capacity to resist gravity and pullout loads. **FOLLOW UP COMMENT:** The hanger appears to be based on a Simpson HGUM bracket. However, the Simpson catalog does not provide a tension capacity for HGUMs. Additionally, the eccentric configuration of this bracket will result in unbalanced distribution of shear and tension to the anchors. Please provide an analysis showing the adequacy of the hanger.

 The loading dock cover has been revised to resist out of plane forces at the 4'-0" shear walls. The custom bracket is based off of the Simpson HGUM bracket that has a documented shear capacity of 7,555 lbs. The custom bracket does not change the eccentricity of the already defined Simpson bracket but does increase its shear capacity by increasing the number of Titen HD's from 8 to 12, while keeping the same anchor spacing and pattern. The required design load is 8,500 lbs. The additional (4) Titen HD's are adequate to resist the 945 lbs of additional load.

S17 - 07_A301 EXTERIOR ELEVATIONS.pdf, page 1

Detail B6: Saw cutting the CMU bed joint for installation of flashing reduces the effective moment of inertia of the CMU wall. Please verify the adequacy of the wall to resist out-of-plane loads. (OSSC 1604.2)

• The cmu walls are fully grouted and are utilizing 60% or less of their bending capacity, per the calculations. The vertical rebar is designed to take majority of the tension forces and the cut does not affect compression capacity. A 3" saw cut for flashing is structurally adequate.

FOLLOW UP COMMENT: The EOR's response is that the sawcut does not affect the strength of the wall because the reinforcement resists tensile stress and the sawcut does not affect the ability of the wall to resist compressive stress. This is acceptable with respect to the capacity of the wall. However, the wall must also meet the maximum out-of-plane deflection limit of TMS 402 9.3.5. Deflection is calculated using effective moment of inertia that is a weighted average of the gross and cracked moment of inertia computed in accordance with TMS 402 Eqn 9-26. The sawcut reduces the cracking moment (Mcr) in the outward direction. This will decrease the effective moment of inertia and should be considered in the deflection evaluation.

• Though a 3 inch saw cut does calculate out, we have limited the saw cut to 1 1/2" to avoid any conflicts with rebar and to be conservative in design. See page 72 of the revised calculations.

Please let us know if you have any questions.

Sincerely,

Stability Engineering, Inc.

By:

Paul Schroeder, P.E., Project Engineer

Encl: Relevant Calculations

Rat Diaphragen Attachment Raits
Max Shear = 362 plf
Try Hiti X-HSN-24 Fosteners W 36/7/4 Pattern
(200ga Deck + 24" O.C. Seam.)
Capacity = 749 plf 2 362 plf : O.K.
Diaphragen Deflection
Autousable wall Deflection: Ausell =
$$Hw^{\circ}(fm)(.33)$$

Hus = 23.67' (max.)
For = 1500 psi
Ew = 1.350,000
Ausell = 2.7"
La (Story Drift) = +007 Hus = 1.960"
(201X Ew)(Ew)
Ex = 7.695"
Aa (Story Drift) = +007 Hus = 1.960"
Ex = 7.695"
Aa (Story Drift) = +007 Hus = 1.960"
Ex = 7.695"
Aa (Story Drift) = +007 Hus = 1.960"
Ex = 2400"
Ex = 248"
Distribute 12.0-1]
Plextured Deflection (worst Case)
At = .013 x W x Ls⁴ x 1728 W= 610 PLF
Ex = 248"
Distribute 12.0-1]
Plextured Deflection (worst Case)
At = .248"
(3)(15")x(200'x12)
Aw = .319"
L = 240' = .120'
F = 9.2 + 11(R) = 14.7
R = .5
.319" + .248" = .433" ≤ 1.66 " $\therefore O.K$.

Masonry Slender V	Vall						Project Fil	e: 22-0690.ec6
IC# : KW-06014874, Build:20.23				Stability Engine	ering Inc.		(c) ENERCA	ALC INC 1983-2023
DESCRIPTION: FROM		J WALL @	MAIN F					
ode References								
Calculations per ACI 530- oad Combinations Used			2016, AS	CE 7-10				
eneral Information					Calculat	ions per ACI 530-13, IB	C 2015, CBC	2016, ASCE 7-10
Construction Type : Groute	ed Hollow	Concrete Ma	sonry	a and a construction for the second construction		and a few start and a few starts for the start of the	Contraction of the real bases in the	
F'm	=	1.50 ksi		Vall Thickness	8 in	Temp Diff across thic		deg F
Fy - Yield	#	60.0 ksi		Thickness	7.625 in	Min Allow Out-of-plan	ne Defl Ra=	0.0
Fr - Rupture	=	163.0 psi		'd" distance	3.8125 in		10020	
Em = fm *	=	900.0		evel Rebar		Minimum Vertical Ste	el% =	0.0020
Max % of o bal.	= 0.0	06990		Size	# 5			
Grout Density	= 1	40 pcf	Bar	Spacing	24 in			
	Normal V							
Wall Weight	=	86.0 psf						
The state of the second s		and the second second second						
vvali	s Solid G	routed						
ne-Story Wall Dimens	ions				a a suit to be the sole of the sole of the			
A Clear Height =		23.670 ft						
B Parapet height =	1	1.330 ft		В				
Wall Support ConditionTop &	& Bottom	Pinned		1		Roof Attachment		100
				8				
				10			N	
				1				
				1				
				A				
								1
								201
						Floor Attachment		
				· · · · · · · ·				
ertical Loads								
Vertical Uniform Loads	Applied pe	ar foot of Strip	Widt	DL : Dea	Lr : Roof I	Live Lf : Floor Live	S: Snow	W: Wind
Ledger Load Ecc	entricity	4.0 in		0.310	n <u>Antonio Station</u>		0.3880	k/ft
Concentric Load								k/ft
ateral Loads			0	amia Landa i				
Wind Loads : Full area WIND load		0 not		smic Loads :	ninmia Load Inc.	ut Method :ASCE seisr	nic factors on	torod
Full area WIND load		0 psf		vvali vveight S	sismic Load inpl	at Method .ASCE Selsi	nic lactors er	litered
				SDS Value per	ASCE 12.11.1	S _{DS} *1 = 0.5	990	
				Fp = Wall Wt.	0.2396 =	20.606 psf		
	D	Lr	L	E	w	Height	(Applied to	full "STRIP Width")
Point Lateral Load	1 (m) 1 (0) (0) (0) (0)				.150 k	11	n	
Unit Lateral Load					.177 k	22.33	ft	
Point Lateral Load								
	α, τ	, , , , ,					1.	
	u	uu	u	w		uuu	u	uu

Masonry Slender Wall								Projec	t File: 22-0)690.ec6
LIC# : KW-06014874, Build:20.23.05.25 Stability Engineering Inc.								(c) ENE	RCALC INC	1983-2023
DESCRIPTION: FRONT CMU	WALL	@ MAIN FA	ACADE							
ESIGN SUMMARY					Results	reported	for "Str	ip Width" of	12.0 in	
Governing Load Combination					al Values			A	llowable V	alues
PASS Moment Capacity Check		a sa sa ta mangana sa	a contra contra co	Maximum	Bending	Stress F	Rato.59	71		
+0.8316D+E				Max Mu	-	1.50 k	-ft P	hi * Mn		2.512 k-f
PASS Service Deflection Check				Actual Defi. Max. Deflect		1,179 0.2408 ir		llowable Defi.	Ratio	240.0
E Only				Max Pu / A	100000000	20.827 p		lax. Allow. De	A	1.184 in
PASS Axial Load Check +1.268D+0.20S+E				Location	,	12.230 ft	200 - C.S.	.05 * fm		75.0 ps
Reinforcing Limit Check				A		000000		av Allaur Aa/b		00000
				Actual As/b	a 0	0.003388	IV	lax Allow As/b	0.0	006990
				Maximum	Reactions	for Load	Combine	ation		
					orizontal	E Only	oonion le			0.2720 k
				235 2010 0 0 0	Horizontal					0.2431 k
					al Reaction					2.848 k
	-							-1 for 1104-1- 11		
esign Maximum Combinations	the property of the second second			······································		Results	reporte	d for "Strip V	viath = 1	2 in.
	Avis									
and Combination		I Load	Mor	Mar		ent Values Phi Mn		As Patio	0.6 *	Desid
.oad Combination	Puk	0.05*f'm*b*t k	Mcr k-ft	Mu k-ft		ent Values Phi Mn k-ft	As in^2	As Ratio	0.6 * rho bai	Bar 'd'
	Pu	0.05*f'm*b*t				Phi Mn	As	As Ratio 0.0034		Bar 'd' 0.00
+1.40D at 22.88 to 23.67	Pu k	0.05*f'm*b*t k	k-ft	k-ft	Phi	Phi Mn k-ft	As in ²		rho bal	
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67	Pu k 0.689	0.05*fm*b*t k 6.867	k-ft 1.58	k-ft 0.14	Phi 0.90	Phi Mn k-ft 2.39	As in^2 0.155	0.0034	rho bai 0.0069	0.00
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67	Pu k 0.689 0.591	0.05*fm*b*t k 6.867 6.867	k-ft 1.58 1.58	k-ft 0.14 0.12	Phi 0.90 0.90	Phi Mn k-ft 2.39 2.37	As in ² 0.155 0.155	0.0034 0.0034	rho bal 0.0069 0.0069	0.00
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84	Pu k 0.689 0.591 0.785	0.05*fm*b*t k 6.867 6.867 6.867	k-ft 1.58 1.58 1.58	k-ft 0.14 0.12 0.19	Phi 0.90 0.90 0.90	Phi Mn k-ft 2.39 2.37 2.41	As in ² 0.155 0.155 0.155	0.0034 0.0034 0.0034	rho bai 0.0069 0.0069 0.0069	0.00 0.00 0.00
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D-0.50W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812	0.05*fm*b*t k 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56	Phi 0.90 0.90 0.90 0.90	Phi Mn k-ft 2.39 2.37 2.41 2.66	As in ² 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034	rho bai 0.0069 0.0069 0.0069 0.0065	0.00 0.00 0.00 0.00 0.00
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D-0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67	Pu k 0.689 0.591 0.785 1.812 1.812 1.211	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43	Phi 0.90 0.90 0.90 0.90 0.90	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66	As in ² 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034	rho bai 0.0069 0.0069 0.0069 0.0065 0.0065	0.00 0.00 0.00 0.00
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D-0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11.	Pu k 0.689 0.591 0.785 1.812 1.812 1.211 2.433	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33	Phi 0.90 0.90 0.90 0.90 0.90 0.90	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51	As in ² 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0069 0.0065 0.0065 0.0067	0.00 0.00 0.00 0.00 0.00 0.00
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0	Pu k 0.689 0.591 0.785 1.812 1.812 1.211 2.433	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33 0.66	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0069 0.0065 0.0065 0.0067 0.0063	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Load Combination +1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D-W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.211 2.433 2.514	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33 0.66 0.34	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0069 0.0065 0.0065 0.0067 0.0063 0.0063	0.00 0.00 0.00 0.00 0.00 0.00 0.00
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.211 2.433 2.514 1.812	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33 0.66 0.34 1.05	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0063 0.0062 0.0062	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D-W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.812 1.211 2.433 2.514 1.812 1.812	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33 0.66 0.34 1.05 0.93	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66 2.66	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0067 0.0063 0.0065 0.0065	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D-W at 11.05 to 11.84 +1.20D+0.50S+W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.812 1.211 2.433 2.514 1.812 1.812 1.812 2.006	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33 0.66 0.34 1.05 0.93 1.08	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66 2.66 2.66 2.70	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0063 0.0062 0.0065 0.0065 0.0065	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D+0.50S+W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84 +0.90D+W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.812 1.211 2.433 2.514 1.812 1.812 2.006 2.006	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33 0.66 0.34 1.05 0.93 1.08 0.90	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66 2.66 2.66 2.70 2.70	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0064 0.0064	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D+0.50S+W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84 +0.90D+W at 11.05 to 11.84 +0.90D-W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.812 1.211 2.433 2.514 1.812 1.812 2.006 2.006 1.359	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.56 0.43 0.33 0.66 0.34 1.05 0.93 1.08 0.90 1.03	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66 2.66 2.70 2.70 2.55	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0065 0.0063 0.0065 0.0065 0.0065 0.0064 0.0064 0.0066	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D-W at 11.05 to 11.84 +1.20D+0.50S+W at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.211 2.433 2.514 1.812 1.812 2.006 2.006 1.359 1.359	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.56 0.43 0.33 0.66 0.34 1.05 0.93 1.08 0.90 1.03 0.94	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66 2.66 2.70 2.70 2.55 2.55	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0063 0.0065 0.0065 0.0065 0.0064 0.0064 0.0066 0.0066	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D+0.50S+W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84 +0.90D+W at 11.05 to 11.84 +0.90D+W at 11.05 to 11.84 +1.268D+0.20S+E at 11.84 to 12.62 +1.268D+0.20S-E at 11.05 to 11.84	Pu k 0.689 0.591 0.785 1.812 1.812 1.211 2.433 2.514 1.812 2.006 2.006 1.359 1.359 1.907	0.05*fm*b*t k 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.56 0.43 0.33 0.66 0.34 1.05 0.93 1.08 0.90 1.03 0.94 1.55	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66 2.66 2.66 2.70 2.55 2.55 2.68	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0063 0.0065 0.0065 0.0065 0.0064 0.0064 0.0066 0.0066 0.0066	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
+1.40D at 22.88 to 23.67 +1.20D at 22.88 to 23.67 +1.20D+0.50S at 22.88 to 23.67 +1.20D+0.50W at 11.05 to 11.84 +1.20D+0.50W at 11.05 to 11.84 +1.20D+1.60S at 22.88 to 23.67 +1.20D+1.60S+0.50W at 11.05 to 11. +1.20D+1.60S-0.50W at 10.26 to 11.0 +1.20D+W at 11.05 to 11.84 +1.20D+0.50S+W at 11.05 to 11.84 +1.20D+0.50S+W at 11.05 to 11.84 +1.20D+0.50S-W at 11.05 to 11.84 +1.20D+0.40S to 11.84 +1.20D+0.50S+W at 11.05 to 11.84 +0.90D+W at 11.05 to 11.84 +0.90D-W at 11.05 to 11.84 +1.268D+0.20S+E at 11.84 to 12.62	Pu k 0.689 0.591 0.785 1.812 1.812 1.812 1.812 1.812 1.812 2.514 1.812 2.006 2.006 1.359 1.359 1.907 1.993	0.05*fm*b*t k 6.867	k-ft 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	k-ft 0.14 0.12 0.19 0.56 0.43 0.33 0.66 0.34 1.05 0.93 1.08 0.90 1.03 0.94 1.55 1.39	Phi 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Phi Mn k-ft 2.39 2.37 2.41 2.66 2.66 2.51 2.80 2.82 2.66 2.66 2.66 2.70 2.55 2.55 2.68 2.70	As in*2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	rho bal 0.0069 0.0069 0.0065 0.0065 0.0065 0.0063 0.0063 0.0065 0.0065 0.0065 0.0064 0.0066 0.0066 0.0064 0.0064	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

	Axial Load	Mome	ent Values		Stiffness		Deflec	ctions
Load Combination	Pu k	Mcr k-ft	Mactual k-ft	l gross in^4	I cracked in ⁴	I effective in^4	Deflection in	Defl. Ratio
D Only at 13.41 to 14.20	1.306	1.58	0.06	443.30	32.74	443.300	0.011	26,062.4
+D+S at 13.41 to 14.20	1.694	1.58	0.14	443.30	33.63	443.300	0.025	11,513.6
+D+0.750S at 13.41 to 14.20	1.597	1.58	0.12	443.30	33.41	443.300	0.021	13,389.7
+D+0.60W at 11.84 to 12.62	1.442	1.58	0.62	443.30	33.05	443.300	0.098	2,904.8
+D-0.60W at 11.05 to 11.84	1.510	1.58	0.54	443.30	33.21	443.300	0.077	3,711.6
+D+0.450W at 11.84 to 12.62	1.442	1.58	0.48	443.30	33.05	443.300	0.076	3,736.4
+D-0.450W at 11.05 to 11.84	1.510	1.58	0.39	443.30	33.21	443.300	0.055	5,186.1
+D+0.750S+0.450W at 11.84 to 12.6	2 1.733	1.58	0.53	443.30	33.72	443.300	0.086	3,285.6
+D+0.750S-0.450W at 11.05 to 11.84	1.801	1.58	0.35	443.30	33.88	443.300	0.045	6,300.2

Masonry Slender Wall							Project File:	22-0690.ec6
LIC# : KW-06014874, Build:20.23.05.25	addie a staar an ar	Sta	ability Engineerin	ng Inc.	an de segueres es	and other and the same	(c) ENERCAL	C INC 1983-202
DESCRIPTION: FRONT CMU	WALL @ MA	IN FAC	ADE					
+0.60D+0.60W at 11.84 to 12.62	0.865	1.58	0.59	443.30	31.71	443.300	0.093	3,062.2
+0.60D-0.60W at 11.05 to 11.84	0.906	1.58	0.56	443.30	31.81	443.300	0.080	3,546.5
+D+0.70E at 11.84 to 12.62	1.442	1.58	1.08	443.30	33.05	443.300	0.183	1,555.0
+D-0.70E at 11.05 to 11.84	1.510	1.58	0.97	443.30	33.21	443.300	0.161	1,759.0
esign Maximum Combinations	- Deflection	IS			Results	reported for	"Strip Width	' = 12 in.
	Axial Load Moment Values				Stiffness		Deflections	
Load Combination	Pu k	Mcr k-ft	Mactual k-ft	I gross in^4	I cracked in ⁴	I effective in^4	Deflection in	Defl. Ratio
+D+0.750S+0.5250E at 11.84 to 12.62	1.733	1.58	0.88	443.30	33.72	443.300	0.150	1,888.9
+D+0.750S-0.5250E at 11.05 to 11.84	1.801	1.58	0.67	443.30	33.88	443.300	0.109	2,604.5
+0.60D+0.70E at 11.84 to 12.62	0.865	1.58	1.05	443.30	31.71	443.300	0.177	1,605.2
+0.60D-0.70E at 11.05 to 11.84	0.906	1.58	0.98	443.30	31.81	443.300	0.164	1,728.3
S Only at 13.41 to 14.20	0.388	1.58	0.08	443.30	30.58	443.300	0.013	21,082.2
W Only at 11.84 to 12.62	0.000	1.58	0.92	443.30	29.64	443.300	0.142	1,996.6
W at 11.84 to 12.62	0.000	1.58	0.92	443.30	29.64	443.300	0.142	1,996.6
E Only at 11.05 to 11.84	0.000	1.58	1.43	443.30	29.64	443.300	0.241	1,179.5
E Only * -1.0 at 11.05 to 11.84	0.000	1.58	1.43	443.30	29.64	443.300	0.241	1,179.5
eactions - Vertical & Horizonta	And the state of the same second to be							
Load Combination	Base Horizo	er en			Top Horiz			Wall Base
D Only	0.0					10 k		2.460 k
+D+S	0.0	K)1 k	2	2.848 +
+D+0.750S	0.0	×			0.0)1 k	2	2.751 k
+D+0.60W	0.1	8			0.1	4 k	2	.460 k
+D-0.60W	0.0	ĸ			0.1	15 5	2	2.460 k
+D+0.450W	0.0	k			0.1	10 k	2	2.460 🐘
+D-0.450W	0.0	¥,			0.1	1 1 K	2	2.460 K
+D+0.750\$+0.450W	0.0	K.			0.1	10 x	2	2.751 k
+D+0.750S-0.450W	0.0	x.			0.1	12 x	1	2.751 k
+0.60D+0.60W	0.1	ĸ			0.1	14 k		1.476 k
+0.60D-0.60W	0.1				0.1	14 k	- 3	1.476 x
+D+0.70E	0.2				0.1	19 x		2.460 ×
+D-0.70E	0.2					20 k		2.460 ×
+D+0.750S+0.5250E	0.1					14 k		2.751 k
+D+0.750S-0.5250E	0.1					15 k		2.751 k
	0.2					19 .		1.476 k
+0.60D+0.70E	0.2					19 k		1.476 k
+0.60D-0.70E								
S Only	0.0					01 .		0.388 k
W Only	0.1					24 k		0.000 k
-W	0.1					24 🗵		0.000 k
E Only	0.2					27 x		0.000 k
E Only * -1.0	0.2	k.			0.2	27 k	3	0.000 k

52
Laterial Check on main Facede

$$F = q_2 GGA K [Auce 7-16] 944-1]$$

 $q_2 = .00955 k_2 K_{22} K_{4} k_{4} k_{6} V^{2} [Asce 7-16] 96.10-1]$
 $k_2 = .7 K_{4} = 1.0 Kd = .85 Ke = 1.0 V = 98.mph$
 $q_2 = 14.62 psf (g = .85 Cf + 1.45 (Auret Case))$
 $F = 18.psf (N.F.) => 10.5psf (AsD)$
Sesmic Load = .12 Wp *(Does not control))
Out of plane (@ CMU) = .94 Wp
Upper Sheathing check:
 $Af = (-5) (45' X/15') = 360 ft^{2}$
 $F = 10.8psi (32061^{2}) = .3888 165$
Dupragen Streas = 3.858 Ke ('18) = 87.p1f & 180.p1f \therefore 518" pluy
Her wall Streas = 3.0588 Ke ('18) = 40.5p1f & 300.p1f \therefore 518"
 $Plu = 10.8psi (104') = 101.4fe^{2}$
 $F = 10.8psi (104') = 109.151 1/ks$
Daphagen Streas = 109.51 1/m = 101.p1f \leq 180.p1f
Load @ LTT20 & = 40.44 fess
LTT20 & Cap = 1325 165 \therefore 0.5.
Out of Plane wall Load + 5eispnic :
Load = .13(Troble X/15.psf) + .10(Troble X/15.psf) + .94(5')(56')(1800(1))
 $= 10.449 Km = 90.plf f : 1.070 de 4'0' 0.5. 0.K.$

58
Lateral check on Loading dark (DEC

$$F = 18psf (NF) = 7108psf (AsD)$$

Seignic Load = 18upp # (Das not control Design)
Sheathing check:
 $Af = 275 ft^2$ $F = 108psf (275 ft^2) = 2970 los$
Disphrogin Shear = $\frac{2970 los(5)}{24} = 57 pH$ \therefore 518" Sheathing ISO.K.
Shearwall Shear = $\frac{2970 los(5)}{24} = 57 pH$ \therefore 518" Sheathing
ISO.K.
Uplift @ In-plane Shearwall:
Higgliss 26'
 $2Mg = 3$
 $Af = 290 ft^2$ $F = 10.8 (290) = 200' (Ay)$
 $Ag = 570 lbs$
 $H = 570 lbs$
 $Af = 290 ft^2$ $F = 10.8 (290) = 2122 lbs$
Load @ Ea wall END = 2122 (S) = 1566 lbs
Shearwall Shear = Fibbolbs = 391 pl f = 518" Sheathing wil
 H^{-1} H^{-1}

64 Lateral check on Corner Facade F= 18psf (N.F.)=7 10.8psf (ASD) Seismic Loud = . 12 wp (Does not Control) Sheathing check: AF = 285 Ft (Total) F= 10.8psf (085 ft?) = 3078 165 Diaphrogm Shear = 3078 165 (15) = 77 p1 f : 5/8" 201 Sheathing 75 0.K. Shear wall Shear = 3078165(.5)(.5') = 38pif :. 5/8" 201 Sheathing IS O.K.

Y		2D Lock ON	
z			
	9-10./10. salasimatan myatan yang matan asala asal	М3	
	N3		N4
			*
IM			K
			M2
			2
			<
ten .	สัง ท1		
			*
			-0.024 k/ft 2
			MARK LUU
			8
Loads: BLC 3	8, Wind Load		
Contractor of the Designation		Corner Wall Facade	WIND LOAD1
IRISA	PS		May 16, 2023 at 10:11 AM
	22-0690		22-0690 Corner Wall Facade

$$\frac{72}{8 \le .007h \quad h = 23^{1} \cdot 8^{\circ}}{8_{5} \le .1788^{\circ}}$$

$$I_{Cr} = 33.05 \text{ in}^{4} \quad \text{Erer Enercalc}$$

$$\frac{1}{6} \le \frac{5}{8} \cdot \frac{5}{1788^{\circ}}$$

$$I_{Cr} = \frac{33.05}{10^{\circ}} \quad \frac{1}{12} \text{ Fer Enercalc}$$

$$\frac{1}{12} \quad \frac{1}{12} \cdot \frac{1}{12} \quad \frac{1}{12} \cdot \frac{1}{12}$$